Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Milja S. Hannu-Kuure, ${ }^{\text {a }}$ Raija Oilunkaniemi, ${ }^{\text {a }}$ Risto S. Laitinen $^{\text {a }}$ and Markku Ahlgren ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, PO Box 3000, FIN-90014 University of Oulu, Finland, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Joensuu, PO Box 111, FIN-80101 Joensuu, Finland

Correspondence e-mail: risto.laitinen@oulu.fi

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.038$
$w R$ factor $=0.094$
Data-to-parameter ratio $=19.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-phenylselenolato-bis[chloro(triphenylphosphine)palladium(II)]

The title compound, $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Se}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$, crystallizes as a centrosymmetric phenylselenolato-bridged dinuclear palladium complex. The Pd atom shows a slightly distorted square-planar coordination geometry, with the $\mathrm{Pd}-\mathrm{Se}$ distance trans to the terminal Cl^{-}ligand at 2.4174 (6) \AA and that trans to the triphenyl phospine at 2.4748 (7) \AA. These values are consistent with the relative trans influence of Cl^{-} and PPh_{3}. The terminal Cl ${ }^{-}$ligands are in trans positions with respect to each other.

Comment

Organic selenolate and tellurolate complexes of palladium and platinum can conveniently be prepared by the treatment of halogenated metal complexes with $R E^{-}$(where E is Se or Te , and R is alkyl or aryl) obtained through the reduction of $R_{2} E_{2}$, or by the oxidative addition of $R_{2} E_{2}$ to zero-valent palladium or platinum (Alyea et al., 1998; Hannu et al., 2000; Hannu-Kuure, Komulainen et al., 2003; Oilunkaniemi et al., 1999, 2001, and references therein). The product distribution is dependent on the molar ratio of the reagents. In this paper, we report the crystal and molecular structure of dinuclear $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (I), which was formed in small amounts by the reaction of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and NaSePh in dichloromethane. The structure determination of (I) completes this series of structures of dinuclear palladium selenolate complexes.

(I)

The crystal structure of the centrosymmetric complex, (I), is shown in Fig. 1, together with the atomic numbering scheme. Selected bond distances and angles are listed in Table 1. The Pd atoms show a slightly distorted square-planar coordination geometry (the sum of the bond angles is 359.8°). The $\mathrm{Pd}-\mathrm{Se}$ bond lengths are 2.4174 (6) \AA (trans to Cl^{-}) and 2.4748 (7) \AA (trans to $\mathrm{Ph}_{3} \mathrm{P}$). These bond distances are consistent with the relative trans influence of the Cl^{-}and triphenylphosphine ligands. They can be compared with the $\mathrm{Pd}-\mathrm{Se}$ bond lengths of 2.4092 (9) and $2.4376(7) \AA$ in $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{SeTh})\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] (Th is 2-thienyl; Oilunkaniemi et al., 2003), and with the bridging $\mathrm{Pd}-\mathrm{Se}$ distances of $2.466(1) \AA$ in $\left[\mathrm{Pd}_{2}(\mu-\right.$ $\left.\mathrm{SeTh})_{2}(\mathrm{SeTh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Oilunkaniemi et al., 1999) and 2.463 (1) and $2.494(1) \AA$ in $\left[\mathrm{Pd}_{2}(\mu-\mathrm{SePh})_{2}(\mathrm{SePh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$

Received 7 January 2004 Accepted 13 January 2004 Online 23 January 2004
(Oilunkaniemi et al., 2001). The $\mathrm{Pd}-\mathrm{Cl}$ bond length in (I) is 2.338 (1) \AA, slightly shorter than the terminal $\mathrm{Pd}-\mathrm{Cl}$ bond lengths of $2.388(1)$ and $2.346(1) \AA$ in $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})(\mu-\right.$ SeTh) $\left(\mathrm{PPh}_{3}\right)_{2}$] (Oilunkaniemi et al., 2003).

The packing of the molecules of (I) is shown in Fig. 2. The closest contact, of $2.794 \AA$ between atoms Cl1 and H134, links the complex molecules into a two-dimensional network.

Experimental

A small number of orange crystals of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (I), were formed by the reaction of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with NaSePh in a molar ratio of 2:1 in dichloromethane. The synthetic procedure was recently published by Hannu-Kuure, Palda'n et al. (2003). A well formed crystal of (I) was selected for the crystal structure determination.

Crystal data

$\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Se}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=1120.36$
Monoclinic, $P 2_{1} / n$
$a=8.878$ (2) \AA
$b=17.533$ (4) \AA
$c=14.398$ (3) \AA
$\beta=105.60(3)^{\circ}$
$V=2158.7(9) \AA^{3}$
$Z=2$
$D_{x}=1.724 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4136
\quad reflections
$\theta=3.8-27.5^{\circ}$
$\mu=2.75 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Plate, orange
$0.25 \times 0.15 \times 0.08 \mathrm{~mm}$

Data collection
Bruker-Nonius KappaCCD areadetector diffractometer
φ scans, and ω scans with κ offsets
Absorption correction: ψ scan (SHELXTL; Bruker, 2001)
$T_{\text {min }}=0.546, T_{\text {max }}=0.810$
23990 measured reflections
4914 independent reflections 4136 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-22 \rightarrow 22$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.034 P)^{2} \\
&+3.9989 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.91 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.94 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The molecular structure of (I), with the atom-numbering scheme of the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The packing of molecules of (I).
Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial support from the Academy of Finland, the Finnish Cultural Foundation, the Tauno Tönning Foundation and the Emil Aaltonen Foundation is gratefully acknowledged.

References

Alyea, E. C., Ferguson, G. \& Kannan, S. (1998). Polyhedron, 17, 2231-2235. Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Release 2.1. Crystal Impact GmbH, Bonn, Germany.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hannu, M. S., Oilunkaniemi, R., Laitinen, R. S. \& Ahlgren, M. (2000). Inorg. Chem. Commun. 3, 397-399.

metal-organic papers

Hannu-Kuure, M. S., Komulainen J., Oilunkaniemi, R., Laitinen, R. S., Suontamo, R. \& Ahlgren, M. (2003). J. Organomet. Chem. 666, 111120.

Hannu-Kuure, M. S., Palda’n, K., Oilunkaniemi, R., Laitinen, R. S. \& Ahlgren, M. (2003). J. Organomet. Chem. 687, 538-544.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands
Oilunkaniemi, R., Laitinen, R. S. \& Ahlgren, M. (1999). J. Organomet. Chem. 587, 200-206.

Oilunkaniemi, R., Laitinen, R. S. \& Ahlgren, M. (2001). J. Organomet. Chem. 623, 168-175.
Oilunkaniemi, R., Laitinen, R. S., Hannu-Kuure, M. S. \& Ahlgren, M. (2003) J. Organomet. Chem. 678, 95-101.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

